Жизненный цикл вируса вич

Жизненный цикл ВИЧ (круговорот ВИЧ в клетке)

(Неумолимый круговорот судьбы)

Еще со школы всем нам хорошо известно такое понятие, как круговорот веществ в природе. Так вот у ВИЧ тоже есть свой круговорот, а точнее, его жизненный цикл, который связан только с человеком, с определенными его клетками. В окружающей среде без человека вирус совершенно беспомощен и быстро погибает. Если случилось бы такое, что все человечество исчезло с планеты Земля, то тут же исчез бы и ВИЧ. На сегодняшний день это единственно возможный, хотя, понятно, совершенно нереальный, чисто фантастический способ освобождения нашей планеты от ВИЧ. ВИЧ подобен огню, существующему только, если есть горючий материал, сжигающему этот материал дотла и вместе с ним погибающему.

Сейчас уже хорошо известно, как вирус проникает в клетки и как его генетическая программа реализуется в пораженном им организме. Как же ведет себя ВИЧ в своем единственно возможном месте обитания — в человеке? Общая схема поведения вируса в клетках изображена на рис. 8. В целом эта схема сходна у всех ретровирусов, отличия здесь только в деталях, но именно эти детали и делают ВИЧ тем, что он есть — смертельно опасным.

Рис. 8. Инфицируя CD4-лимфоциты, ВИЧ осуществляет ряд превращений, в результате которых происходит его размножение и гибель клетки-хозяина. Подробности см. в тексте.

Все вирусы для того, чтобы поразить организм, в первую очередь прикрепляются к клеткам хозяина, связываясь со специфическими белками, которые называются рецепторами. Однако рецепторы для разных типов вирусов совершенно различны (табл. 2). Этим и предопределяется, какие клетки могут быть заражены (инфицированы) данным вирусом, а какие нет. Так, рецептор для вируса полиомиелита имеется только на нейронах; они-то и инфицируются в первую очередь при попадании вируса в организм. А вот риновирус «любит» соединяться с белком по имени ICAM-1, который присутствует на мембранах многих типов клеток, в результате все они могут быть заражены этим вирусом. На сегодняшний день далеко не для всех вирусов обнаружены рецепторы, но это не означает, что их нет. И поиск их продолжается.

Вирусы человека и рецепторы клеток, с которыми они взаимодействуют

Какова же ситуация в случае ВИЧ? Попав на слизистую оболочку или прямо в кровяное русло человека и циркулируя там, вирус занят только одним: он ищет то место, куда он мог бы проникнуть и где мог бы нормально существовать, чтобы в дальнейшем размножиться. Иначе ВИЧ погибнет. Как видно из табл. 2, ВИЧ способен проникать далеко не во все виды клеток крови, а только в те, которые несут на своей поверхности специальный белок-рецептор — CD4, к которому вирус легко и охотно присоединяется. Белок вируса под названием gp120 (см. рис. 6), расположенный на его поверхности, как радар, находит белок-рецептор CD4 на поверхности клетки и плотно связывается с ним по принципу «ключ-замок». Этому взаимодействию способствуют и некоторые дополнительные белки, которые поэтому называют корецепторами. Имена основных корецепторов для ВИЧ — CCR5 и CXCR4. B нормальных клетках они служат полноценными рецепторами для специфических клеточных белков-регуляторов — хемокинов. А для взаимодействия клеток с ВИЧ они играют всего лишь роль помощников для основного рецептора CD4. Однако без этих белков-корецепторов, так же как без С4-рецептора, вирус проникнуть в клетку не может.

Рис. 9. Схемы взаимодействия ВИЧ с разными типами клеток с участием рецептора (CD4) и корецепторов (CCR5 и CXCR4)

Рецепторы и корецепторы для ВИЧ имеются на поверхности нескольких типов клеток иммунной системы. Наличие С4-рецептора позволяет называть все эти клетки С4-лимфоцитами. В частности, на мембране уже упоминавшихся Т-лимфоцитов-хелперов имеется С4-рецептор и CXCR4-корецептор. С4-рецептор содержится также на поверхности макрофагов и дендритных клеток, которые также одновременно несут и корецептор CCR5 (рис. 9). На ранней стадии ВИЧ-инфекции вирусы обычно имеют большее сродство с макрофагами, поэтому их называют М-троп-ными. Белок оболочки этих вирусов gp120 способен связываться одновременно с С4-рецептором и CCR5-корецептором. На более поздних стадиях ВИЧ приобретает сродство с Т-клетками, поскольку белок gp120 видоизменяется и становится способным связываться с клетками, содержащими как С4-рецептор, так и CXCR4-корецептор. По этой причине такие вирусы называют Т-тропными.

Понятно, что ключевой для взаимодействия ВИЧ и клетки С4-белок-рецептор когда-то возник и существует сейчас в некоторых типах клеток совсем не для того, чтобы вирусу было удобно в них проникать. Это очень важный клеточный белок, который обычно участвует на самых первых этапах сложного процесса передачи сигналов при активации Т-клеток. А ВИЧ просто сумел подобрать «ключ» именно к этому «замку». В результате в организме человека атака вируса идет главным образом именно на С4-содержащие клетки. Основным способом попадания ВИЧ внутрь таких клеток человека является его физическое связывание как с белком-рецептором, так и белком-корецептором, расположенными на клеточной оболочке (рис. 9). Вирус иногда сравнивают с гаечным ключом фиксированного размера: за гайки меньшего размера он не сможет зацепиться, а гайки большего размера вообще не войдут в его паз. Как уже говорилось, взаимодействие вируса и рецептора на поверхности клеток можно также сравнить с ключом и замком. Когда ключ входит в замок — стыковка вируса и клетки произошла, после чего дверь открывается. Происходящее за этим слияние внешней оболочки вируса с мембраной клетки-мишени обеспечивает легкое проникновение (перетекание) вируса внутрь клетки. При этом ВИЧ «раздевается» там: освобождается от своей оболочки.

Затем вирусу, чтобы жить и развиваться, необходимо перевести свою генетическую информацию на понятный клетке-хозяину язык, т. е. информацию, записанную в форме полимерной молекулы РНК, превратить в ДНКовую форму (рис. 8). Для этого клетка синтезирует белок-фермент, закодированный в вирусном геноме, под названием «обратная транскриптаза». Этот фермент и осуществляет образование на РНК однонитевой ДНК-копии. Затем с помощью того же фермента достраивается вторая нить ДНК. И, наконец, новоиспеченная двунитевая ДНК-копия вируса с помощью специального вирусного фермента интегразы встраивается внутрь ДНК клетки-хозяина. Такое состояние вируса получило название провируса. ДНК провируса имеет размер около 10 тыс. пар нуклеоти-дов (п.н.) и окружена с обеих сторон одинаковыми последовательностями нуклеотидов, называемыми длинными концевыми повторами (LTR — сокращенно от англ. long terminal repeats), размером по 600–700 п.н. каждый (рис. 7). B этих длинных концевых повторах содержатся все необходимые для регуляции работы генов элементы, которые и управляют работой вирусных генов в новом для них месте.

Места встраивания вируса в геном человека хотя в целом и случайные, но тем не менее есть определенное предпочтение к тем участкам, которые не «молчат» в клетках, а активно работают. После внедрения в ДНК клетки-хозяина провирус становится для клетки «родным», как и собственные гены. ДНК-провирус, по сути дела, представляет собой небольшой новый текст (программу) в огромном «старом» клеточном ДНКовом тексте. Так вирусная лжепрограмма проникает в главный информационный центр — аппарат клетки. Хотя в человеческой клетке в 100 тыс. раз больше генетической информации, чем в геноме провируса, который влезает в человеческий геном, маленький, но хитрый и проворный ВИЧ в конечном итоге одерживает победу над человеком.

Считалось, что вирус, превратившись в провирус, успокаивается; эту форму иногда называют «покоящимся вирусом». Но в действительности в большинстве случаев дело обстоит скорее всего не совсем так. Что же происходит после образования про-вируса? Завладев «штаб-квартирой» клетки-хозяина, ВИЧ (теперь уже в форме провируса) вскоре начинает отдавать приказы, которым клетка вынуждена подчиняться. Этот момент называют активацией провируса. Насколько неизбежно он наступает? Ответ на этот вопрос, по сути дела, тот же, что и на наивный вопрос, поставленный перед детишками С. Маршаком:

Читайте также:  Гормональные нарушения у женщин симптомы

Можно ль козам не бодаться,

Если рожки есть?

В пляс девчонкам не пускаться,

Если ножки есть?

Провирус, имеющий и «рожки» и «ножки», без долгих сомнений и размышлений вступает на тропу войны и «бодается» и «пляшет». Не осознавая еще опасности, клетка сама предоставляет вирусу все необходимы химические компоненты, все свои внутренние резервы для его развития и размножения. Сначала происходит транскрипция провируса, в результате которой образуются новые вирусные РНК, т. е. новые геномы. Подчиняясь генетической программе ВИЧ, которая теперь стала для клетки ее собственной, клетка начинает синтезировать на вирусной РНК вирусные белки. Поскольку первоначально синтезируются большие молекулы-предшественники, другой вирусный белок — протеаза — разрезает их на строго определенные блоки. Так клетка активно производит различные компоненты вируса, истощая этим себя. Затем на поверхности клеточной мембраны из этих компонентов происходит предварительная грубая «сборка» новых вирусных частиц из синтезированных клеткой блоков. Новые вирусы готовы! Они «отпочковываются» от клетки, после чего вирусы становятся «зрелыми», способными инфицировать новые клетки, т. е. готовыми к штурму новых линий обороны. Таков жизненный цикл вируса, который неизбежно заканчивается гибелью инфицированного Т-хелпера. По времени этот цикл (от связывания вируса с клеткой и до выхода первых вирусных частиц из инфицированной клетки) составляет менее суток (обычно от 15 до 20 часов). Скорость размножения ВИЧ очень высока — в организме инфицированного человека образуется порой до 10 млрд. новых вирионов в день. Хотя некоторые из них погибают под действием иммунной системы, остающиеся инфицируют новые лимфоциты, и цикл репликации вируса повторяется. Общее число инфицированных лимфоцитов в организме ВИЧ-позитивных пациентов составляет обычно величину от 10 7 до 10 9 клеток.

Действие вируса в Т-клетке можно рассматривать как сценарий некой написанной неизвестным писателем драмы, которая отражает в общих чертах происходящую ситуацию. B данном случае некоторое повторение не помешает читателю более осмысленно понять, что же ВИЧ делает с Т-клеткой, чтобы в конечном итоге привести организм человека к СПИДу (repetitio est mater studiorum — повторение — мать учения).

Сценарий драмы под названием «ВИЧ-потрошитель»

Уже давно драматическая пьеса под этим названием идет ежедневно на миллионах «сценических площадок», но по-прежнему сохраняется в «театральном репертуаре». В этом спектакле и начало, и финал ясны заранее, но от этого интерес зрителя не исчезает.

Главный герой этой пьесы — ВИЧ-убийца. Странствуя по свету, маньяк-убийца ВИЧ попадает в новую страну-организм. Здесь он, обладая изощренными навыками взломщика и имея соответствующий набор ключей, быстро находит «дом», в который проникает без разрешения его хозяйки. Первое, что вирус делает при входе — он начинает «раздеваться». Далее по сценарию ВИЧ, нагрянув неожиданно в гости и встретив у порога растерявшуюся хозяйку, умудряется сразу так заморочить ей голову, что она, словно под гипнозом, начинает делать все, что только непрошеный гость пожелает. Пожеланий немного, но каждое из них исполняется хозяйкой быстро и беспрекословно. В реальности дело происходит так. По «рецепту» гостя, забыв о богатейшей собственной «кулинарной книге», хозяйка «испекает» несколько специальных «блюд»-ферментов — обратную транскриптазу и интегразу. Теперь гость получает возможность быстренько «переодеться» в квартире у хозяйки. Обратная транскриптаза неузнаваемо меняет его облик (это уже не ВИЧ-РНК, а ВИЧ-ДНК). Интеграза способствует тому, что хозяйка окончательно принимает преображенного гостя в свои объятья. ВИЧ становится почти своим, хорошо узнаваемым. Он даже меняет свое имя — теперь ВИЧ называется провирусом. После этого уже трудно сказать, кто в доме гость, а кто хозяин, и в конечном итоге происходит то, что и «задумано» гостем: он неизбежно сам становится хозяином, а хозяйка — его служанкой. Первый акт драмы закончен.

После антракта пьеса продолжается. Во втором акте возможны импровизации действующих «лиц». Провирус некоторое время может играть бессловесную роль. Вроде бы он есть, и вроде бы его нет. Он отдыхает, оценивает ситуацию. Никому не известно, когда он выйдет на сцену и начнет произносить свой монолог, после которого последует быстрый трагический финал. Здесь свою роль играют другие участники спектакля. Их называют факторы — актеры вторых ролей, но без них никак нельзя обойтись. Эти актеры участвуют в спектакле с самого начала, но были малозаметны. Однако если вдруг некоторые их них по каким-то причинам «заболеют», то спектакль вообще не начнется. Во втором акте от актеров-факторов также зависит многое, и в первую очередь время, когда заговорит главный «герой» — провирус. Полностью оценив ситуацию в доме, характер хозяйки, ее образ жизни и возраст, провирус начинает делать свое «черное дело». Он начинает производить огромное свое потомство. Бесконечные измывательства над приютившей его хозяйкой заканчиваются в конце концов ее гибелью. Прожорливое «потомство» набрасывается на соседние дома и, разоряя их, также продолжает размножаться в огромном количестве. Тут и наступает финал — в опустошенную страну вторгаются полчища врагов, которые раньше были малосильными, чтобы справиться самим, и которые в конечном итоге приводят страну-организм к гибели. Утешение для зрителя только одно: вместе погибают все: и хозяева, и их враги. Таков неизбежный финал драмы под названием «ВИЧ-потрошитель», напоминающий по трагизму финал шекспировского «Гамлета». Acta est fibula! (Пьеса сыграна!).

ВИЧ является на сегодняшний день одним из самых глубоко и детально изученных вирусов в истории человечества. Однако, несмотря на это, пока еще далеко не все аспекты ВИЧ-инфекции поняты полностью. Так, остается не до конца ясно, каким именно образом в конечном итоге вирус разрушает иммунную систему, каковы механизмы гибели Т-хелперов, почему некоторые люди с ВИЧ остаются абсолютно здоровыми в течение длительного времени? Тем не менее многое уже сегодня стало понятно. Об этот теперь и поговорим подробнее.

Просто о сложном

—>СТАТЬИ —>

—>

[07.07.2014] [Вирусы] Натуральная оспа ()
[18.07.2014] [Вирусы]
Вирусы. Краткий обзор ()
[21.07.2014] [Общие понятия]
Вирусология ()
[03.07.2014] [Общие понятия]
Немного истории ()
[04.07.2014] [Инфекции]
Цитомегаловирусная инфекция ()
[21.08.2014] [Вирусы]
Вирус иммунодефицита человека (ВИЧ) ()
[22.08.2014] [Вирусы]
Строение и жизненный цикл вируса иммунодефицита человека (ВИЧ) (1)
[09.02.2016] [Вирусы]
Лихорадка Зика ()

—> —>

Строение вируса иммунодефицита человека

Строение вируса иммунодефицита человека

Вирионы ВИЧ имеют вид сферических частиц, диаметр которых составляет около 100—120 нанометров (это приблизительно в 60 раз меньше диаметра эритроцита).

В состав зрелых вирионов входит несколько тысяч белковых молекул различных типов.

Капсид зрелого вириона, состоящий из примерно 2000 молекул белка р24, имеет форму усечённого конуса.

Внутри капсида находится белково-нуклеиновый комплекс: две нити вирусной РНК, прочно связанные с белком нуклеокапсида p7, ферменты (обратная транскриптаза, протеаза, интеграза).

С капсидом также ассоциированы белки Nef и Vif (7—20 молекул Vif на вирион).

Внутри вириона (и, вероятнее всего, за пределами капсида) обнаружен белок Vpr8-11. Кроме того, с капсидом ВИЧ-1 (но не ВИЧ-2) связазны около 200 копий клеточного фермента пептидилпролилизомеразы, необходимого для сборки вириона.

Капсид окружён оболочкой, образованной примерно 2000 молекул матриксного белка p17. Матриксная оболочка в свою очередь окружена двуслойной липидной мембраной, являющейся наружной оболочкой вируса. Она образована молекулами фосфолипидов, захваченными вирусом во время его отпочковывания от клетки, в которой он сформировался.

Читайте также:  Вирус герпеса лечение травами

В липидную мембрану встроены 72 гликопротеиновых комплекса Env, каждый из которых образован тремя молекулами трансмембранного гликопротеина gp41 (TM), служащего «якорем» комплекса, и тремя молекулами поверхностного гликопротеина gp120 (SU).

С помощью белка gp120 вирус присоединяется к рецептору CD4 и корецептору, находящимся на поверхности Т-лимфоцитов человека. Стехиометрическое соотношение p24:gp120 в вирионе составляет 60—100:1.

Белки gp41 и в особенности gp120 интенсивно изучаются в качестве возможных мишеней для разработки лекарств и вакцины против ВИЧ .

При формировании наружной оболочки вируса также происходит захват некоторого количества мембранных белков клетки, в том числе человеческих лейкоцитарных антигенов (HLA) классов I и II и молекул адгезии.

Функции важных структурных белков ВИЧ-1

Сокращение

Описание

Функции

gp41 (TM, transmembrane)

Трансмембранный гликопротеин массой 41 кДа

Располагается во внешнем слое липидной мембраны, играет роль «якоря», удерживающего молекулы белка gp120

gp120 (SU, surface)

Гликопротеин массой 120 кДа

Наружный белок вириона. Нековалентно связан с трансмембранным белком gp41. С одной молекулой gp41 связаны 3—5 молекул gp120. Способен связывать рецептор CD4. Играет важную роль в процессе проникновения вируса в клетку.

Белок массой 24 кДа

Образует капсид вируса

Матриксный белок массой 17 кДа

Около двух тысяч молекул этого белка образуют слой толщиной 5—7 нм, располагающийся между внешней оболочкой и капсидом вируса.

p7 (NC, nucleocapsid)

Нуклеокапсидный белок массой 7 кДа

Входит в состав ка псида вируса. Образует комплекс с вирусной РНК.

Геном и кодируемые белки

Геном ВИЧ-1

Геном ВИЧ-1

Генетический материал ВИЧ представлен двумя копиями положительно-смысловой (+)РНК. Геном ВИЧ-1 имеет длину 9000 нуклеотидов. Концы генома представлены длинными концевыми повторами (англ. long terminal repeat, LTR), которые управляют продукцией новых вирусов и могут активироваться и белками вируса, и белками инфицированной клетки. 9 генов ВИЧ-1 кодируют, по крайней мере, 15 белков.

Ген pol кодирует ферменты: обратную транскриптазу (RT), интегразу (IN) и протеазу (PR).

Ген gag кодирует полипротеин Gag/p55, расщепляемый вирусной протеазой до структурных белков p6, p7, p17,p24.

Ген env кодирует белок gp160, расщепляемый клеточной эндопротеазой фурином на структурные белки gp41 и gp120.

Другие шесть генов — tat, rev, nef, vif, vpr, vpu (vpx у ВИЧ-2) — кодируют белки, отвечающие за способность ВИЧ-1 инфицировать клетки и производить новые копии вируса. Репликация ВИЧ-1 in vitro возможна без генов nef, vif, vpr, vpu, однако их продукты необходимы для полноценной инфекции in vivo.

Gag: Полипротеин-предшественник Gag/p55 синтезируется с полноразмерной геномной РНК (которая в данном случае служит в качестве мРНК) в процессе стандартной кэп-зависимой трансляции, но возможна и IRES-зависимая трансляция. Предшественники функциональных белков располагаются в составе полипротеина Gag/p55 в следующем порядке: p17…p24…p2…p7…p1…p6 (р1 и р2 — соединительные пептиды; другие продукты расщепления Gag/p55 описаны выше).

Нерасщеплённый протеазой Gag/p55 содержит три основных домена: домен мембранной локализации (М, membrane targeting), домен взаимодействия (I, interaction) и «поздний» домен (L, late).

Домен М, расположенный внутри области p17/МА, миристилируется (присоединяются остатки миристиновой кислоты) и направляет Gag/p55 к плазматической мембране. Домен I, находящийся внутри области p7/NC, отвечает за межмолекулярные взаимодействия отдельных мономеров Gag/p55. Домен L, также локализованный в области p7/NC, опосредует отпочковывание вирионов от плазматической мембраны; в этом процессе участвует также р6 область полипротеина Gag/p55.

Vpu: Двумя важными функциями белка Vpu являются:

1) разрушение клеточного рецептора CD4 в эндоплазматическом ретикулуме путём привлечения убиквитинлигазных комплексов и

2) стимуляция выделения дочерних вирионов из клетки, путём инактивации интерферон-индуцируемого трансмембранного белка CD317/BST-2, получившего также название «tetherin» за его способность подавлять выделение вновь образовавшихся дочерних вирионов посредством их удержания на поверхности клетки.

Vpr: Белок Vpr необходим для репликации вируса в неделящихся клетках, в том числе макрофагах. Этот белок, наряду с другими клеточными и вирусными белками, активирует длинные концевые повторы генома ВИЧ. Белок Vpr играет важную роль в переносе провируса в ядро и вызывает задержку деления клетки в периоде G2.

Vif: Белок Vif играет важную роль в поддержке репликации вируса. Штаммы, лишённые этого белка, не реплицируются в CD4+-лимфоцитах, некоторых линиях T-лимфоцитов («недоступных клетках») и макрофагах. Эти штаммы способны проникать в клетки-мишени и начинать обратную транскрипцию, однако синтез провирусной ДНК остаётся незавершённым.

Nef: Белок Nef выполняет несколько функций. Он подавляет экспрессию молекул CD4 и HLA классов I и II на поверхности инфицированных клеток, и тем самым позволяет вирусу ускользать от атаки цитотоксических T-лимфоцитов и от распознавания CD4+-лимфоцитами. Белок Nef может также угнетать активацию T-лимфоцитов, связывая различные белки-компоненты систем внутриклеточной передачи сигнала.

У инфицированных вирусом иммунодефицита макак-резусов активная репликация вируса и прогрессирование болезни возможны только при интактном гене nef. Делеции гена nef были обнаружены в штаммах ВИЧ, выделенных у группы австралийцев с длительным непрогрессирующим течением инфекции.

Однако у части из них со временем появились признаки прогрессирования инфекции, в том числе снижение числа CD4+-лимфоцитов. Таким образом, хотя делеции гена nef и могут замедлять репликацию вируса, это не гарантирует полной невозможности прогрессирования заболевания.

Tat и Rev: Регуляторные белки Tat (транс-активатор) и Rev накапливаются в ядре клетки и связывают определённые участки вирусной РНК. Белок Tat имеет молекулярную массу около 14-15 кДа, связывает вторичную структуру геномной РНК вблизи 5′-нетранслируемой области активирует обратную транскрипцию геномной РНК ВИЧ, синтез вирусных мРНК, необходим для репликации вируса почти во всех культурах клеток, регулирует выход вирионов из зараженных клеток, нуждается в клеточном кофакторе — циклине T1. Белок Rev регулирует экспрессию белков вириона, связывает мРНК гена env в области RRE (англ. Rev response element) интрона, разделающего экзоны генов Tat и Rev.

Белки Tat и Rev стимулируют транскрипцию провирусной ДНК и транспорт РНК из ядра в цитоплазму, а также необходимы для трансляции. Белок Rev обеспечивает также транспорт компонентов вируса из ядра и переключение синтеза регуляторных белков вируса на синтез структурных.

Жизненный цикл

На схеме показано слияние вирриона ВИЧ и плазматической мембраны Т-лимфоцита человека

Этап 1. Взаимодействие вирусного белка gp120 с клеточным рецептором CD4 (указано красной стрелкой)

Этап 2. Конформационные изменения вирусного белка gp120 обеспечивают связывание с клеточным рецептором CCR5 (указано красной стрелкой)

Этап 3. Концевые участки вирусного белка gp41 проникают в плазматическую мембрану клетки (указано красной стрелкой)

Этап 4. Вирусный белок gp41 подвергается значительным конформационным изменениям, складывается пополам (указано красной стрелкой) и образует спираль, что приводит к сближению и слиянию мембран вириона и клетки. Таким образом ВИЧ захватывает Т-лимфоцит с целью дальнейшей репродукции.

Проникновение в клетку и интеграция

Вирусная инфекция начинается, когда вирион ВИЧ сталкивается с человеческой клеткой, имеющей на своей мембране рецептор CD4. Вирусный гликопротеин gp120 прочно связывает рецептор CD4. В результате такого взаимодействия gp120 претерпевает конформационные изменения, которые позволяют ему также связать молекулу корецептора CXCR4 или CCR5 (экспрессируемых на поверхности Т-лимфоцитов, макрофагов, дендритных клеток и микроглии).

В зависимости от способности связывать эти корецепторы, ВИЧ классифицируют на R5-тропные (связывают только CCR5), X4-тропные (связывают только CXCR4) и R5X4-тропные (могут взаимодействовать с обоими корецепторами). Препараты, блокирующие корецепторы могут быть эффективны против ВИЧ.

После описанных событий мембрана клетки и мембрана вириона ВИЧ сливаются, и содержимое вириона проникает внутрь клетки. Белок gp41 очень важен для слияния мембран, поэтому его рассматривают в качестве мишени для разработки противовирусных препаратов. Внутри клетки вирусная РНК высвобождается из капсида, и происходит обратная транскрипция — синтез ДНК на основе матрицы одноцепочечной геномной РНК вируса, катализируемая обратной транскриптазой.

Читайте также:  6 День месячных болит живот

Большая часть лекарственных препаратов, одобренных для применения при ВИЧ-инфекции, направлена на нарушение работы обратной траскриптазы. Синтезированная ДНК транспортируется внутрь ядра клетки и встраивается в хромосому хозяина под действием интегразы. Несколько препаратов, ингибирующих интегразу, проходят ранние стадии клинических испытаний. Вирусная ДНК, встроившаяся в хромосому клетки, называется провирусом.

Человеческая РНК-полимераза в ядре клетки синтезирует информационную РНК (мРНК), а позднее и геномную РНК вируса. Синтезированные РНК транспортируются обратно в цитоплазму, где на матрице мРНК на рибосомах синтезируются вирусные ферменты, структурные и регуляторные белки.

Сборка и отпочковывание вирионов

Геномная РНК вируса, а также вирусные белки транспортируются к местам сборки вирионов. Сборка вирионов происходит на мембране, куда направляется миристилированный полипротеин Gag/p55. Вирионы первоначально формируются из полипротеинов-предшественников структурных белков и ферментов и на этой стадии не являются инфекционными.

В ходе созревания вирусной частицы вирусная протеаза расщепляет белки-предшественники до функциональных компонентов. Несколько одобренных противовирусных препаратов ингибируют работу протеазы и препятствуют формированию зрелых вирионов.

Новые вирусные частицы отпочковываются от поверхности клетки, захватывая часть её мембраны, и выходят в кровяное русло, а клетка хозяина, несущая рецептор CD4, погибает. Недавние исследования показали, что процесс отпочковывания вирионов может быть более сложным, чем считалось ранее. Так было обнаружено, что благодаря взаимодействию белка Gag с компонентами клетки вирионы накапливаются в особых внутриклеточных мультивезикулярных тельцах, которые обычно служат для экспорта белков. Таким образом вирусные частицы высвобождаются из клетки, эксплуатируя её собственную систему транспорта макромолекул.

Распространение по организму

В период острой фазы ВИЧ-инфекции отсутствие специфического иммунного ответа позволяет вирусу активно реплицироваться и достигать высоких концентраций в крови.

Вирус заселяет органы лимфатической системы, CD4 + -лимфоциты, CD8 + -лимфоциты и макрофаги, а также другие клетки: альвеолярные макрофаги лёгких,клетки Лангерганса, фолликулярные дендритные клетки лимфатических узлов, клетки олигодендроглии и астроциты мозга и эпителиальные клетки кишки.

В лимфоидной ткани ВИЧ размножается на протяжении всего заболевания, поражая макрофаги, активированные и покоящиеся CD4 + -лимфоциты и фолликулярные дендритные клетки. Количество клеток, содержащих провирусную ДНК, в лимфоидной ткани в 5—10 раз выше, чем среди клеток крови, а репликация ВИЧ в лимфоидной ткани на 1—2 порядка выше, чем в крови.

Резервуаром ВИЧ служат лимфатические узлы и конкретно дендритныe клетки, в которых вирус сохраняется длительное время после периода острой виремии.

Для активации CD8 + -лимфоцитов и образования антиген-специфических цитотоксических T-лимфоцитов необходима презентация пептидного антигена в комплексе с человеческим лейкоцитарным антигеном класса I.

Дендритные клетки, необходимыe для начала первичных антиген-специфичных реакций, захватывают антигены, перерабатывают и переносят их на свою поверхность, где эти антигены в комплексе с дополнительными стимулирующими молекулами активируют T-лимфоциты.

Заражённые клетки часто не выделяют дополнительных стимулирующих молекул и поэтому не способны вызвать активацию достаточного числа B и T-лимфоцитов, функция которых зависит от дендритных клеток.

После завершения обратной транскрипции в CD4 + -лимфоците вирусный геном представлен провирусной невстроенной ДНК. Для встраивания провирусной ДНК в геном клетки-хозяина и для образования новых вирусов необходима активация T-лимфоцитов.

Контакт CD4 + -лимфоцитов и антигенпредставляющих клеток в лимфоидной ткани, наличие вирусов на поверхности фолликулярных дендритных клеток и присутствие провоспалительных цитокинов (ИЛ-1, ИЛ-6 и ФНОα) способствуют размножению ВИЧ в инфицированных клетках. Именно поэтому лимфоидная ткань служит самой благоприятной средой для репликации ВИЧ.

На 2014 год ВИЧ-инфекция остаётся неизлечимым заболеванием, так как геном вируса интегрируется в хромосомы клеток и может реактивироваться даже после курса антиретровирусной терапии.

В настоящее время идёт поиск безопасных способов редактирования генома человека и исключения из него провирусной ДНК. В 2014 году был предложен метод удаления генома ВИЧ-1 из заражённых клеток при помощи системы CRISPR/Cas9. С помощью этого метода исследователям удалось вырезать фрагмент провирусной ДНК, заключённый между 5′- и 3′-концевыми LTR-областями из хромосом зарежённых клеток в культуре.

Кроме того, этот метод оказался также эффективным для профилактики заражения неинфицированных клеток. Описанный подход может привести к разработке способа полного избавления от ВИЧ-инфекции.

🔊 Прослушать пост

Нужно знать свое врага — вирус ВИЧ/СПИДа и чем больше мы знаем его, тем легче нам с ним бороться, назначать правильное лечение, придумывать новые лекарства, новые способы профилактики.

Взаимодействие ВИЧ (вирус иммунодефицита человека) с иммунной системой организма

ВИЧ атакует белые кровяные тельца (лимфоциты), а именно их вид, который называется T-хелперы (помощники) или СD4-клетки. Они помогают нам бороться с болезнями и инфекциями.

Вирус ВИЧ не может сам по себе размножаться, поэтому он забирается внутрь лимфоцита, взламывает его генетический материал и начинает сам себя копировать используя механизмы Т-хелпера. Такой лимфоцит теряет свои защитные свойства и это ослабевает иммунную систему, человек начинает болеть разными болезнями (саркома Капоши, кандидоз пищевода, пневмоцистная пневмония и др., которыми человек с нормальной иммунной системой не болеет).

Как быстро вирус ВИЧ будет размножаться зависит от самого вида вируса ВИЧ (его субтипа, мутаций) (есть «добрые» вирусы ВИЧ, с которыми можно спокойно прожить всю жизнь и есть «злые» вирусы ВИЧ, которые загонят в гроб в течение года), состояния самого организма (тяжелая работа, тюрьма, дополнительные болезни ослабляют организм, способствуют размножению вируса ВИЧ) как быстро был обнаружен ВИЧ и как скоро начато адекватное антиретровирусное лечение.

Жизненный цикл вируса ВИЧ/СПИДа

Жизненный цикл вируса ВИЧ/СПИДа многократно повторяется в организме на протяжении многих лет. Антиретровирусная терапия воздействует на разные этапы жизненного цикла ВИЧ и разрывает этот цикл, тем самым тормозится увеличение числа ВИЧ и иммунной системе дается небольшая передышка и за это время она немного укрепляется.

Этапы жизненного цикла ВИЧ

Прикрепление и слияние

Сначала вирус ВИЧ/СПИДа с помощью шипов берет её на абордаж, прикрепляется к рецепторам клетки Т-хелпера, оболочки ВИЧ и CD4 соединяются вместе, а потом содержание вируса проникает в клетку.

Группа антиретровирусных препаратов, которые препятствуют прикреплению и слиянию вируса называются CCR5 антагонистами и ингибиторами слияния.

Обратная транскрипция и интеграция

Проникнув в клетку, вирус ВИЧ/СПИДа с помощью фермента обратной транскриптазы меняет свой генетический материал с РНК ВИЧ на ДНК ВИЧ. Внутри CD4 лимфоцита ВИЧ продуцирует интегразу (фермент ВИЧа). ВИЧ использует интегразу для внедрения своей вирусной ДНК в ДНК CD4 лимфоцита. ДНК ВИЧ проникает в ядро клетки и начинает контролировать её генетический код ДНК.

Группа антиретровирусных препаратов, которые препятствуют обратной транскрипции и интеграции называют ненуклеозидными ингибиторами обратной транскриптазы (ННИОТ), нуклеозидными ингибиторами обратной транскриптазы (НИОТ) и ингибиторами интегразы.

Транскрипция и трансляция (репликация)

Как только ВИЧ встроился в ДНК клетки, он начинает использовать механизмы CD4 лимфоцита для создания длинных цепей белков ВИЧ и перемещает их к краю клетки, которые затем используются для создания большего количества вирусов. Белковые цепи — это кирпичики для постороения новых вирусов ВИЧ. ДНК ВИЧ создает длинные нити (цепи) белков РНК и перемещает их к краю клетки, которые затем используются для создания большего количества вирусов.

Сборка, созревание и отпочковывание

Копии генетического материала ВИЧ содержаться среди нитей РНК. Они образуют новые частицы ВИЧ, которые затем выходят из клетки Т-хелпера, они готовы для заражения других клеток и копирования, и цикл опять повторяется пока не наступит смерть организма или не придумают лекарство от ВИЧ.

Группа антиретровирусных препаратов, которые препятствуют это части процесса называют ингибиторами протеазы.

Добавить комментарий

Ваш адрес email не будет опубликован.

Adblock
detector